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Abstract: Aromaticity and the Woodward-Hoffmann rules are discussed using an extended valence bond method 
in which the Heitler-London functions for the bonds are replaced by general two-electron functions. Problems 
raised by the formation and stability of the benzene valence isomers prismane, Dewar benzene, and benzvalene, 
which remain unsettled in other treatments, find their natural solution in the present formulation. It is shown 
that previous discussions by van der Lugt and Oosterhoff and by Mulder and Oosterhoff are special examples of 
the present approach. 

1. Introduction 

The Woodward-Hoffmann rules1 can be obtained in a 
simple and general way by requiring the transition state 
of an allowed reaction to be aromatic. This method 
has been used especially by Dewar2 and Zimmerman3 

and is also essential in the papers on permutation 
symmetry control by Mulder and Oosterhoff.4 

In discussing relative stabilities of transition states we 
do not avoid the controversial term aromaticity. We 
realize that for a long period the word aromatic was 
used to summarize the chemical behavior of a class of 
compounds and that it was this behavior for which 
Htickel5 suggested an explanation in terms of his An + 
2 rule. Fundamental in Hiickel's reasoning is the 
large energy gap between ground state and excited 
state(s) in a ring with An + 2 electrons which con
trasts the small separation in a ring with 4« electrons. 
Present day (ab)usage of the words aromatic and 
antiaromatic concentrates on the energetic stability of 
the ground state. The connection with Hiickel's 
original reasoning becomes clear if we remember the 
explanation given previously46 for the opposite be
havior of photochemical and thermal reactions: in 
an aromatic transition state (thermally allowed reac
tion path) a large gap exists between the electronic 
ground state and the next excited state whereas in an 
antiaromatic transition state (forbidden reaction path) 
ground state and excited state(s) come close together. 
In this paper the first general derivation of the An + 2 
rule is given (eq 1). 

Aromaticity rules are generally thought to be readily 
derived from molecular orbital theory. Therefore it is 
not surprising that the Woodward-Hoffmann rules are 
usually obtained within the MO formalism. Despite 
the apparent success of MO theory there are neverthe
less several reasons why a valence bond approach is 
more appropriate for the problem considered here. 

(1) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital 
Symmetry," Verlag Chemie, Academic Press, Weinheim Bergstr., 
Germany, 1970. 

(2) M. J. S. Dewar, Tetrahedron, Suppl, 8, Parti , 75 (1966); M. J. 
S. Dewar, "The Molecular Orbital Theory of Organic Chemistry," Mc
Graw-Hill, New York, N. Y., 1969. 

(3) H. E. Zimmerman, / . Amer. Chem. Soc, 88, 1564 (1966). 
(4) J. J. C. Mulder and L. J. Oosterhoff, Chem. Commun., 305, 308 

(1970); J. J. C. Mulder, Thesis, Leiden, 1970. 
(5) E. Hiickel, Z. Phys., 70, 204 (1931). 
(6) W. Th. A. M. van der Lugt and L. J. Oosterhoff, Chem. Commun., 

1235 (1968); W. Th. A. M. van der Lugt, Thesis, Leiden, 1968; W. 
Th. A. M. van der Lugt and L. J. Oosterhoff, J. Amer. Chem. Soc, 91, 
6042(1969). 

First of all, pericyclic reactions can often be described 
as an isomerization from one valence structure to 
another.7 This point, which is closely connected with 
the VB method, is difficult to envisage in MO theory. A 
second reason is the fact that in the VB method states 
instead of one-electron orbitals are considered. There
fore, the joint influence of all electrons together is 
effective from the beginning whereas in the MO dis
cussion this essential factor is introduced in a second 
step when the molecular orbitals are combined to 
state functions. These two points illustrate that the 
VB method is a more direct tool in the search for the 
fundamental factors determining aromaticity and the 
Woodward-Hoffmann rules. 

According to a VB approximation with neglect of 
"long-bond structures" the resonance energy of 2n-
membered rings is 

{-3n/(2n + 2)} J 

where/is the exchange integral, which is assumed to be 
negative. This result does not agree with Hiickel's 
rule and thus shows that aromaticity and consequently 
the Woodward-Hoffmann rules should be discussed in 
terms of a VB method which goes beyond the classical 
assumptions. In their calculations with orthogonal 
atomic orbitals van der Lugt and Oosterhoff (Lu-O)6 

had to include completely ionic structures with alter
nating positive and negative charges. Mulder and 
Oosterhoff (Mu-O)4 showed that cyclic permutations 
of all electrons are essential when the atomic orbitals 
are nonorthogonal but ionic structures are neglected. 

In the present paper we will show that a generalized 
valence bond method can be formulated which contains 
both the Lu-O and Mu-O results as special examples. 

Before starting our analysis we would like to point 
out two important applications of the present treat
ment. 

First the presence of more than one ring is handled 
in a straightforward manner. This means that the 
valence isomerizations of benzene follow directly. 
For example, the forbidden character of the conversion 
of prismane to benzene follows immediately from the 
general rule formulated in eq 7. 

Secondly odd-membered ionic as well as neutral 
systems are treated in a completely analogous way and 

(7) M. G. Evans and E. Warhurst, Trans. Faraday Soc., 34, 614 
(1938). 

Journal of the American Chemical Society j 94:16 / August 9, 1972 



5725 

the results agree with what is known about these 
cases. 

2. Monocyclic Systems 

We first consider monocyclic systems. In the case 
of Woodward-Hoffmann rules this implies that we 
discuss the transition state of reactions such as the 
interconversion of hexatriene and cyclohexadiene. A 
general reaction of this type can be described as a 
cyclic isomerization in which the bonds a, b, . . ., s in A 

C a C - -a- r 
u 12 

Ci ,Cx 

A 9n.1 On /a 

are replaced by the bonds a, /3, . . ., a. The reaction 
will be allowed if the ring system pictured in A is aro
matic. In our discussion of this problem we will 
take the wave functions for the structures with bonds 
a, b, . . ., s and with bonds a, /3, . . ., a to be 

* i = 

{ 2 " / ( 2 « ) ! } , / 2 E ' « P ^ ( 1 , 2)4(3, 4). . .5(2« - 1, 2B) X 
P 

[1,2][3, 4]...[2» - 1,2»] 

¥ n = {2»/(2n)!}1/^'6p/>a(3, 2)0(5, 4). . .<r(l, 2«) X 
p 

[3, 2][5, 4]. . .[1,2»] 

The wave functions without the antisymmetrizer will be 
written 011 and $ i n ; the space parts of fa1 and 0 i n 

are / i 1 and / i n , respectively. The summation over P 
includes all (2n)!/2B permutations which interchange 
electrons between different bonds, eP = ± 1 depending 
on the parity of the permutation and [i,J] stands for 
the singlet spin function J a ^ — 0iaj}l\/2. It should 
be noted that ^i and \pu are not identical with the 
usual valence bond wave functions; a(\, 2), say, is 
now a general two-electron function, which may con
tain both covalent and ionic terms. 

The resonance energy of the ring system will be 
defined in the classical way as the energy lowering due 
to the mixing of i/̂  and \pu. Depending on the sign of 
the Hamilton matrix element Hi,u, the ground state 
wave function is either (^i + \pn)/(2Si,i + 2Si,n)1/! 

or (^i - ^n)/(2Si,i - 2SI , I I ) I / ! , where S ^ is the 
overlap matrix element. In the first case the resonance 
energy is 

Hi,i _ \2Hi,i -\- 2Hi,U] _ /fi.i5i.ii — Hi,nSi,i 
Si,i '2Si,i + 25I , I I J SI , I{SI , I + Si ,n} 

whereas the second possibility yields 

Hi,i _ \2Hi,i — 2Hi,Ii} _ Hi,uSi,i — Hi,iSi,u 
Si,i (2SI , I — 2Si,n} SI , I{SI , I — Si,n} 

Roughly speaking, Hi,i and Si,i vary linearly with 
the number of atoms 2« so the aromatic or nonaromatic 
character of the ring system is determined by the 
factors Hi,n and Si,n. Therefore we consider the 

general matrix element 

<*i|0|¥n> = 

{27(2n)!K2>R/?«(l, 2)4(3,4). . . ( 2 B - 1, 2B) X 
R 

[1, 2][3, 4]. . .[2« - 1, 2» |n |£ 'e P P a (3 , 2) X 

p 

/ 9 ( 5 , 4 ) . . . < T ( 1 , 2 B ) [ 3 , 2 ] [ 5 , 4 ] . . . [ 1 , 2 B ] > = 

(a(l,2)4(3,4)...s(2n - 1 ,2B) X 

[1, 2][3, 4]. . .[2« - 1, 2n] |0 |I>pPa(3, 2) X 
p 

/3(5,4)...<r(l, 2«)[3, 2][5, 4]...[1,2«]> 

In the evaluation of this matrix element we consider 
nearest-neighbor interactions only (see the Appendix 
for a further discussion of this point). Then it follows 
immediately that only those permutations need to be 
considered which yield a function 0 4

n = P{4>iu in which 
the electron numbers of the bonds are identical with 
two of the electron numbers of the neighboring bonds 
in 4>il. Thus, e.g., the electron numbers 1 and 2 which 
are in a in 4>il should either be in a or in a in cf>t

u (see 
A). In the same way 3 and 4 should either be in a or in 
/3, etc. 

The relevant permutations can now be divided into 
three groups. 

(1) Consider a function 0 4
n = P^i11 in which a has 

one electron number from bond a and one from bond b, 
e.g., a(3, 2). The electron number 1 should be in a 
and number 4 in /3. The second electron number of /3 
should be taken from bond c in 4>J, so we have /3(5, 4) 
or /3(6, 4), etc. Repeating this process around the 
ring system we will find that each function in ^4

11 has 
one electron number from both neighboring bonds of 
011. Since we have n pairs of electrons, this distribution 
can be realized in 2n different ways. We thus obtain 2n 

different permutations, including the identity, which are 
interconnected by transpositions of electron numbers 
which are in the same bond in <£iJ. From the latter 
property it follows that all of these 2" permutations 
yield identical contributions to the matrix element. 

(2) In the second type of permutation a has both 
electron numbers of bond a in ^1

1, so we have a( l , 2). 
It follows immediately that /3 has both electron numbers 
of bond b: (3(3, 4), etc. We thus have only one 
possible permutation of this type, yielding 

fa11 = a( l , 2)0(3, 4). . .<r(2» - 1, 2«) X 

[1,213, 4 ] . . . [ 2 B - 1 ,2B] 

which is obtained from <j>iu by a cyclic permutation of 
half the total number of electrons, so the parity is 
( - 1 ) - ' . 

(3) In the same way we obtain a contribution from 

0 3 " = a(3, 4)/3(5, 6). . . f f(l, 2)[3, 4][5, 6]. . .[1, 2] 

where now the electron numbers of a and bond b, /3 
and bond c, etc., are identical. Qi,u then becomes 

<*i|0|¥„> = 2"(0!1In^1") + 

( - I ) - W M ^ 1 1 ) + (4.11Î 3
11M 

For spin-independent operators the spin factors can be 
removed by application of Pauling's rules. This 
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yields 

<*I|Q|¥H> = 2(Z1
1JnIz1

11) + 
(-I)-1KZi1IQl/.11) + C/iW.")} (D 

where Zi1, say, is the space part Of^1
1. 

It follows from eq 1 that the magnitude of the matrix 
element is strongly dependent on the value of n. When 
all three integrals on the right-hand side have equal 
signs, then Qi,n has the form A + B if n — 1 is even and 
A — B if n — 1 is odd. This alternation in the magni
tude of QI.II is reversed when the sign of the second and 
third integral is opposite to the sign of the first integral. 
On substitution in the formula for the resonance 
energy these two cases should just give the aromaticity 
rules for normal and Mobius ring systems, respectively. 
We will show the correctness of these assumptions 
about the signs of the integrals by comparison with the 
Lu-O and Mu-O treatments. This comparison will be 
done by considering the overlap matrix element Si,n 
(one could also use Hj,u but then the discussion is 
somewhat more complex). 

2.1. Calculations with Orthogonal Atomic Orbitals. 
We assume the two-electron bond functions to be cal
culated in a basis of two orthogonal atomic oribtals. 
Then the bond functions may be written 

a(\, T) = Ma(Wi02 + ViU2)/V2 + Va(W1W2 + PiPa)/V2 

a(l, 2) = Mc(P1W2 + W1P2WS + vJviVi + WiW2)/V2 

Z)(I, T) = JUb(W1X2 + XiW2)/V2 + Vb(W1W2 + XiX2)IV2 

etc. Here, u, v, w, and x are the atomic orbitals for the 
atoms Cu, Cv, Cw, and Cx (see A) and Ma and va, say, 
are the coefficients of the covalent and ionic terms in 
a{\, 2). 

We first consider the second integral in Si,u. This 
can be written 

(Zi1I/11) = (a(l, 2)|a(l, 2)><6(3, 4)|/3(3, 4)). . . 

Due to the neglect of atomic orbital overlap, (a(l, 2)|-
a( l , 2)) is determined by the Cu+-Cv- and Cv--Cw+ 
terms in a and a, respectively, so 

(a(\, 2)|a(l, 2)) = (p&va/2)(viv2\P1P2) = v«ya/2 

which yields 

(Zi1I/11)= {V2i-2 nIU 

where k numbers the bond functions in both \j/i and \pu. 
It follows that (Zi1I/11) depends on the completely 

ionic contributions to \pi and \pu having an alternating 
charge distribution with the negative charge on the 
atoms C4, Cv, Cx . . . . The same result is obtained for 
(Zi1IZi11) but now the atoms Cu, Cw, • . • carry the 
negative charge. In (Zi1I/11), « 0 , 2) shares one 
electron with both bond a and b, so this integral de
pends on the covalent contributions to î i and i^n. 
It follows that 

(Z1I/1 1) = { V 2 } - 2 " f l M , 
* - i 

We thus obtain 

(¥ii*ii> = 2-"+1Jn M* + (-if-1 ft >4 
U = I k = 1 J 

For normal ring systems the atomic orbitals can be 
chosen that all /3 values are negative (corresponding to 
positive overlap integrals in calculations without ne
glect of overlap). Then M and v have equal signs for 
each bond. In the case of Mobius ring systems, how
ever, there remains one positive /3 value (negative 
overlap integral). For this bond M and v have opposite 
signs. We can take account of this difference by 
assuming M and v to be the values for a bond with a 
negative /3 value and correcting the sign by introduction 
of a factor (— l) r with r being the number of positive 
S values (negative overlap integrals). This yields as 
our final formula 

<*I|*I,> = 2-"+4n Hk + (-l/+*-1 ft vX (2) 
U = i A = i ; 

This result confirms the interpretation of eq 1 given 
above. Moreover, it is in agreement with an observa
tion made by van der Lugt from the Lu-O calculations.8 

According to van der Lugt the difference in the total 
energies of the transition states for the allowed and 
forbidden reaction pathways is caused by terms in
volving the completely ionic valence bond structures 
having an alternating charge distribution. This is 
just the same result as expressed by eq 2. If polar 
structures are neglected as in the usual valence bond 
method, eq 2 reduces to the first term only. This 
explains the failure of classical VB calculations in 
predicting aromaticity and the Woodward-Hoffmann 
rules. 

2.2 Calculations with Nonorthogonal Atomic Orbitals. 
In order to compare our results with the Mu-O treat
ment, we neglect ionic contributions but include nearest-
neighbor atomic overlap integrals. In this case the 
bond functions are 

a(l, 2) = (U1V, + PiW2)/(2 + 2Sa„
2)I/! 

a(\, 2) = (P1W, + WiD1)I(I + 25 r a
2) I / ! 

6(1, 2) = (WiX2 + XiWt)I(I + 2SZJ)1^-

The major contribution to ( /1I /1 1) is the usual valence 
bond result which does not predict aromaticity. In 
the present case there are some additional terms due to 
the inclusion of atomic orbital overlap. It can easily 
be shown, e.g., by integrating the product of Z1

1 andZi11 

over the electron numbers 1, 2, and 4, that the addi
tional terms are proportional to the squares of the 
atomic orbital overlap integrals. Consequently, they 
do not differentiate between normal and Mobius ring 
systems and are thus also unable to predict aromaticity. 
( /1I /1 1) and ( /1I /1 1) are products of integrals such as 

(a(l, 2)|«(1, 2)) = 2SUISVJV(2 + 2SUV*)(2 + 2SVJ) 

which yields 

(/1I/11) = (/1I/11) = ft sjVi + ss 
* - i / 

where S* is the overlap integral between the atomic 
orbitals of bond k. The product of all overlap inte
grals in this expression has opposite signs for normal 
and Mobius ring systems. This point can be made 

(S) W. Th. A. M. van derLugt, personal communication. 
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to come out more explicitly by writing 

(Zi1IZ2
11) = (Zi1IZa11) = ( - I ) H i S k | / V l + S*2 

* - l / 

where r is the number of negative overlap integrals as 
before. These results again confirm the interpretation 
of eq 1. In the present approximation aromaticity is 
determined by the balance between the usual valence 
bond result with some additional terms proportional 
to the squares of the overlap integrals and a term which 
depends on the product of all overlap integrals. This is 
precisely the same result as obtained by Mu-O for their 
discussion of the role of cyclic permutations in valence 
bond calculations with inclusions of overlap. 

3. Polycyclic Systems 

In the case of polycyclic systems, e.g., naphthalene 
and azulene, we have the possibility of more than two 
Kekule structures. E.g., for naphthalene the struc
tures are I, II, and III. The interaction between I and 

II III 

II and between II and III is determined by the super
position diagrams 

O - O 
In this case the matrix elements depend largely on the 
separate rings in the superposition diagram. In cor
respondence with the previous section it follows that 
the interaction will be large if the separate rings are 
aromatic. The interaction between I and III is much 
more difficult to handle. The general superposition 
diagram for interactions of this kind is given by B. 

2H'g.aK.i 

1,2 

.[2MM-. 2k-2,2k-3 

The extra bond now introduces an essentially non-
negligible, non-nearest-neighbor interaction. The non-
nearest-neighbor interactions are of two types; they 
may split the system into two even-membered rings 
(dashed line in B) or into two odd-membered rings 
(dotted line in B). In the first case the number of bonds 
on the perimeter participating in the right ring is 2k — 1, 
in the second case this number is 2k — 2. The numbers 
in B represent the electron distribution in ̂ 1

1 as before. 
In order to obtain a contribution from the additional 

interaction, we must consider cyclic permutations of 
the electron numbers of all bonds participating in 
either the left or the right ring (and products of these 
permutations). The space parts of the functions </>/" 
which we choose to represent the different types of rele
vant permutations, this permutation in cycle notation, 
its parity and spin factor and the number of permuta
tions of each kind are collected in Table I. The con-

Si 
(N (N (N CN (N — — 

ml. 
i 

i i i i i I 

«5 Xi 
(N ^ 

x ; 

+ + 
rS (N 

(N~?? 

I I I 

(N « t"N 

. — . — (N 

g-+w+X 
C-CJ- _i_ Ci--^ 
(N (N - ^ (N ~ 

(N <N S S S S * 
~H — — r*-T —T Cl 

M l M l 

Il 
Ii Ii 

; -» - * -« • * ;K 
!.(N (N (N ( ^ C i 

^ 5 > ^ * ^ t Co t 

U-T eT in" (^" w 

HIP 
~? —:* _ T <*"•>" 
en — en —' N - , 

N Il Il Il " 

3 + 

(s ; 
—"^f 

I Ci 

(N i - * 
I 

+ • + ' 
r . f i 1 ^ ' 

(N (N I 

(N (N (N (N (N — —- (N (N (N - H 

( N ( N ( N ( N ( N - . - ( N ( N ( N - H 

I I I I I I I I I I I 

-Si 
(N 

«5 
—" -a 

(N 
(5 *> (N ' 

- : .-* 
— . — (N 

i ^ i X^^i? 
I <N I 

(N (N ^ - H " * 
to (N ^ (N ts (N I 

-? + 
(N .-* 
— (N 

+ S 
(N 

•Si , 

^ I 

- * + - * • 
(N (N 

. J * . • 
— (N — ; 

I S + : 
(N ~ < 

I J i -Si 
(N (N 

: —" : -i<: 

« i M ^ 
+ -* + : 

(N 
- * V --Si ^ 
(N O (N (N 

^ I 

?- .»- ?- e»- ?- ?-

(N C-

^ ( N (N 
-S<! . - S i . 
(N — ( N . — 

^=* -J- *£. -1-
R ^ ( N 

-V . - S i 
| N - N 

A i S l S 
(N (N (N 

.. .-Si -

in" irT m" en" v f en" ^ 

en en en — en ~ " *»_.• 

* * * * * * * 

^J- ^o ^O ^O 

v T «<n ^ 1 O 

5 ! <3£ CQ. QQ. 

en" en" en en 

Is "tf Is Ŝf 

be lie i/3 ic 6c 1 ĉ 5 ic ft So V) 

I <N^ 

( N - H 

I (N" - ^ 

s r i ( N " 

+ + 

(N 
(N n (N T(N 

: I I : : 
^ ( N ; J1J J J 

- _ (N ?5 

fs ,. (N Tj-

— (N — (N <N 

: I I I 

— I (N 

I •Si 
(N c; 

. (N 
-W -
(N — 

C- (N . 

"(N-(N" 
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tribution to Qi,n for two even-membered rings is 

2(/11IoIz4
11) + 2(-D-4Kz1IInI/,") + 

(Z1MZe11M + 2(-1/-M(Zi1IoI/11) + 
(/11MZ11M +(-Ir-1I(Z1IoIZ9

1 1) + 
(Zi1IOlZiO11)) (3) 

and for two odd-membered rings it is 

-4(Z1IoIg4
11) + 2(-0"-M(Zi1IOb11) - (Z1IoIg6

11) -
(Zi1IoIgIi11)! + 2(-I)^(Z1IoIg7I1) - (Zi1IoIg8

11) + 
(Zi1IoIgI2

11)! + (-Ir-1I(Zi1IoIg9") + (Zi1IoIgIO11) -
2(Zi1IoIgI3

11) + (Zi1IoIgH11)! (4) 

A discussion of the meaning of eq 3 and 4 is most easily 
done by assuming the bond functions to be calculated 
in a basis of orthogonal atomic orbitals with neglect of 
differential overlap. The contribution to the overlap 
integral (ipi\\pu) vanishes in this case; therefore we con
sider the Hamilton operator. Due to the neglect of 
overlap and differential overlap eq 3 and 4 reduce to 

A#i,n"» = 2(-Ir-M(Zi1I//)/11) + (Zi1Î lZe11M + 
2(-Ir-1KZi1I^lZ11) + (Zi1Î iZs11M (5) 

for two even-membered rings and to 

AH1Jf^ = 2(-Ir-M(Zi1I^IlTs11) - (Zi1Î lSe11M + 
2 ( - I r - 1 K Z i 1 W 1 ) - (Z i 1 W 1 M (6) 

for two odd-membered rings. 
As an example we consider the term {f\l\H\fiU). In 

the same way as before, it follows that this matrix ele
ment is determined by the ionic terms in the bond func
tions for the left ring and by the covalent terms for the 
right ring. The final result is 

(Zi1JiZiZ11) = 2 - j n M . } { . n " < } / 3 * 

where /3X is the resonance integral for the non-nearest-
neighbor interaction. For (Zi1IiZ1Ze11) we obtain the 
same result whereas for (/1JZZj/11) and (Zi1IiZlZsn) M ar>d 
v are interchanged. So, we obtain for two even-
membered rings 

Affi,ii-» = 2-*+2|V ir-* | 1nu | | f i ^ j + 
/2J--1 W 2« } -

(-i)HlwilW ^ (7) 

{ . i = l ) \i = 2k ) _ 
For two odd-membered rings it follows in the same way 
that 

(Z1IiZIg5
11) = (Zi1IiZIg6") 

(Zi1IiZIg7") = (Zi1IiZIg8
11) 

So, 

AiZ1J1 = 0 (8) 

Equations 7 and 8 result in the aromaticity rules for 
polycyclic systems2 which can be summarized as fol
lows. The introduction of an extra bond in a 2«-
membered system does not change the resonance energy 
when the system is split into two odd-membered rings. 
In the case of two even-membered rings the resonance 
energy is enlarged when the separate rings are aromatic 
and diminished when the separate rings are not aromatic. 

An interesting application of eq 7 and 8 is the for
bidden or allowed character of the valence isomeriza-
tions of benzene. According to the Woodward-Hoff
mann rules in the formulation given in ref 1, the inter-
conversion of benzene and prismane should be thermally 
allowed and Woodward and Hoffmann need some 
further arguments to show why prismane is a stable 
molecule (ref 1, p 107). From eq 7, however, it follows 
that both the conversion to Dewar benzene and to pris
mane are forbidden because of the suprafacial formation 
of two four-membered rings. 

The case of the benzvalene formation is much less 
simple. Haller9 has published a correlation diagram 
for this reaction, but his diagram is in error because of 
an incorrect symmetry designation of the benzvalene ir 
and 7T* orbitals. In fact, the benzvalene formation is 
an example of a reaction for which correlation diagrams 
do not distinguish between suprafacial and antara-
facial bond formations (ref 1, p 31). This is just the 
same conclusion as obtained from eq 8, because the new 
bonds in benzvalene form odd-membered rings and 
therefore do not change the resonance energy. So, the 
Woodward-Hoffmann rules as such do not apply to 
the benzvalene formation. From the unchanged 
resonance energy on introduction of the new bonds, we 
may, however, conclude that the activation energy 
will be less than in the case of the Dewar benzene and 
prismane formation and in this sense we may con
clude that the benzvalene formation is "allowed." 

4. Odd-Membered Systems 

4.1. Ionic Systems. The best known examples of 
aromatic odd-membered ring systems are the cyclo-
pentadienyl anion and tropylium cation. Contrary to 
the preceding cases the aromaticity of these ionic species 
can be derived from the usual valence bond method10 

but here we will only consider the generalized ap
proach introduced above. 

Consider as an example the cyclopentadienyl anion. 
In this case there are five principal structures such as 

O Q-
<-) 
i u 

On neglect of non-nearest-neighbor interactions non
zero matrix elements are only obtained between 
structures with the charge on neighboring atoms. The 
Hamiltonian matrix element is then proportional to 
the /3 value between the atomic orbitals carrying the 
charge. The proportionality factor is most easily 
calculated by introduction of a positively charged 
"ghost orbital." The interacting structures with in
clusion of the ghost orbital are 

<A Qr 
(-) c+) (+> 

i n 
It follows immediately that the interaction between I 
and II can be treated in the same way as the non-
nearest-neighbor interactions discussed in Section 3. 

(9) I.Haller,/. Chem.Phys., 47, 1117 (1967). 
(10) H. Fischer and J. N. Murrell, Theor. Chem. Acta, 1, 463 (1962-

1963). 
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In the discussion in Section 2 and 3 the numbering 
of electrons in \pu was chosen in the same way as in the 
usual valence bond method. This facilitated a com
parison with the Lu-O and Mu-O treatments. In 
the present case, however, it is somewhat easier to use 
instead of ^ n 

¥ n ' = 
{2"/'INl}1" £ ' epPa(l, 2)0(3, 4). . .cr(N,N + 1) X 

p 

[I, 2][3, 4]...[N,N + 1] 

which is different from \pu by a cyclic permutation of 
half the total number of electrons, and where N is now 
the number of carbon atoms in the ring. So, \pu' = 
(—iy!f~1)li]\pn- With this choice of wave function \pu 

is obtained from ^ i by a rotation over 360/N degrees. 
If all wave functions for the ring of N atoms are chosen 
in this way we have // i ,n = Hu.iu = etc. The sym
metry of the ring is then introduced in a simple way. 
This is not possible with wave functions with an electron 
distribution corresponding to the usual valence bond 
method. 

The total system including the ghost orbital now 
consists of two odd-membered rings. Therefore we 
must consider the functions gi',. . ., gu' corresponding 
to gi,. . ., gu used in eq 4. In the present case we 
have the additional condition that the ghost orbital 
should be positively charged. If we take the three-
membered ring containing the ghost orbital to be the 
right ring, it follows that in the case of orthogonal 
atomic orbitals contributions are obtained from gs 

only. So, according to eq 6 

<i|i/|n)ne6 = 2(-\y*-»iHf I1IHIg^) 

In the same way as before this yields 

<iH\ii)nes = (-iy"-»i*hl MiW-v-3"2 

where i numbers the double bonds in structures I and 
II. 

For positive ions it follows in the same way that we 
can only get contributions from g7. This yields 

<ii#iii>P0, = -(-i)<A'-»'2|nMiW(Ar-3»2 

The secular problems obtained from all of the 
principal structures now become the same problems 
as in Heilbronner's molecular orbital discussion of 
normal and Mobius ring systems11 but in the present 
case we must consider the lowest eigenstate only. 
The ionic odd-membered ring systems will be aro
matic if this lowest eigenstate is nondegenerate. From 
the papers by Heilbronner11 and by Zimmerman3 it 
is easily inferred that the resulting aromaticity rule 
becomes: negatively charged normal ring systems and 
positively charged Mobius ring systems are aromatic 
if (JV — l)/2 is even whereas positively charged normal 
ring systems and negatively charged Mobius ring 
systems are aromatic if (N — l)/2 is odd. 

4.2. Neutral Systems. In the case of neutral odd-
membered ring systems we introduce a ghost orbital 
containing one electron. Then the electron distribution 
is identical in all of the principal structures. This 

(11) E. Heilbronner, Tetrahedron Lett., 1923 (1964). 

implies that nonzero matrix elements exist between all 
of these structures. We first consider the interaction 
between two structures with the unpaired electron on 
neighboring atoms. 

i Ii 

The dots in these structures represent the fact that the 
bonds with the ghost orbital are purely covalent. 
Because of this covalency, the matrix element between 
I and II consists of terms corresponding to the first 
term of eq 1 and of terms corresponding to the con
tributions of gi and gs in eq 6. The latter contribution 
vanishes as in Section 3 whereas the first term of eq 1 
does not differentiate between normal and Mobius 
ring systems. 

As an example of the interaction between structures 
with the unpaired electron on nonneighboring atoms 
we consider 

<V) (V) 
In this case the contributions corresponding to the 
nonneighboring interactions in eq 6 do not occur 
whereas the contributions corresponding to eq 1 are 
again independent of the normal or Mobius character 
of the ring. It thus follows that all of the matrix ele
ments and consequently the energies of the ground 
states are identical for normal and Mobius ring systems. 
Neutral odd-membered rings can therefore be said to 
be nonaromatic as suggested before by Dewar.2 

Appendix 

Neglect of Non-Nearest-Neighbor Interactions. In 
Section 2 we have rederived the Mu-O result which 
states that in their particular approximation aromaticity 
depends on the product of all nearest-neighbor overlap 
integrals. In view of the orders of magnitude one might 
argue that it is inconsequent to consider such a term 
while simultaneously neglecting the non-nearest-neigh
bor interactions. We have not examined this problem 
in all details, but in this appendix we will show that in a 
large number of cases the non-nearest-neighbor interac
tions are not important in a discussion of aromaticity. 

First of all, for the integrals (A1I fi11), (Mfc11), and 
(/11IZa11) discussed in Section 2 one can safely assume 
that non-nearest-neighbor interactions will not change 
the conclusions about sign. It then follows that we 
can only expect an influence on our results through per
mutations not considered above. These permutations 
are of different kind insofar as they may yield inter
action terms depending on one, two, or more non-
nearest-neighbor overlap integrals. We will only con
sider terms depending on one non-nearest-neighbor inter
action. 

From Section 3 it follows that interactions between 
two odd or even numbered atoms, e.g., 1-3 interac
tions, do not influence the resonance energies because 
they split the total ring system into two odd mem
bered rings (see eq 6 and 8). Odd-odd and even-even 
interactions can therefore be neglected. 

van der Hart, Mulder, Oosterhoff / Extended Valence Bond Theory 
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The situation is more complex if one considers odd-
even interactions, e.g., 1-4 interactions. 

Let us first consider the 1-4 interaction in an eight-
membered ring. In this case the non-nearest-neighbor 
interaction splits the total system into a four- and a six-
membered ring. If all overlap integrals are positive, 
it follows from eq 5 and 7 that the contributions to the 
resonance energy obtained from the two subsystems 
have opposite signs so the total contribution is small. 
If there is one negative overlap integral, terms occur 
in which both the four- and the six- membered rings are 
aromatic but these are compensated by terms in which 
both subsystems are nonaromatic. We thus may con
clude that non-nearest-neighbor interactions have no 

The relative acidities of conjugated hydrocarbons 
are important in structure-reactivity relationships. 

Different methods have been employed by different 
investigators2 in various solvent systems in measure
ments of acidities of carbon acids. In our studies,3 

we have used a competition method of two hydro
carbons with insufficient strong base in cyclohexyl-
amine to measure the equilibrium 

R1-M+ + R2H ^ = i RiH + R2-M+ (1) 

The determination of the acidities of 9-alkylfluorenes 
is of considerable interest to help establish the nature of 
the electronic effect of alkyl groups at a sp2-hybridized 
carbanion center. Bowden, Cockerill, and Gilbert,4 

using the H- technique in dimethyl sulfoxide-water, 
reported the acidity of a series of 9-substituted fluorenes. 

(1) This research was supported in part by Grant No. 12855 of the 
National Institutes of Health, U. S. Public Health Service. 

(2) For general reviews in this area, see: (a) D. J. Cram, "Funda
mentals of Carbanion Chemistry," Academic Press, New York, N. Y., 
1965; (b) A. Streitwieser, Jr., and J. H. Hammons, Progr. Phys. Org. 
Chem., 3, 41 (1965); (c) H. Fischer and D. Rewicki, Progr. Org. Chem., 
7, 116(1967); (d)H. F. Ebel, "Die Aciditat der CH-Sauren," G. Thieme 
Verlag, Stuttgart, 1969. 

(3) (a) A. Streitwieser, Jr., J. H. Hammons, E. Ciuffarin, and J. I. 
Brauman, / . Amer. Chem. Soc, 89, 59 (1967); (b) A. Streitwieser, Jr., 
E. Ciuffarin, and J. H. Hammons, ibid., 89, 63 (1967); (c) A. Streit
wieser, Jr., C. J. Chang, W. Hollyhead, and J. R. Murdoch, ibid., 94, 
5288 (1972). 

(4) K. Bowden, A. F. Cockerill, and J. R. Gilbert, J. Chem. Soc. B, 
179 (1970). 

influence on the aromatic or nonaromatic character of 
4n-membered rings (n = 1, 2, 3,. . .). 

Unfortunately, a similar conclusion cannot be made 
in the case of {An + 2)-membered rings. E.g., a 1-4 
interaction splits a six-membered ring into two four-
membered rings. Now, if all overlap integrals are 
positive as in benzene, both subsystems are nonaro
matic so the 1-4 interaction diminishes the resonance 
energy. On the other hand, it must be noted that, 
just as in the case of 1-2 interactions, the 1-4 interac
tions enter the resonance energy through a product of 
all overlap integrals of the subsystem, so the difficulty is 
probably not too serious. 

One significant finding in their results is that 9-methyl-
fluorene is more acidic than fluorene, contrary to the 
common expectation that alkyl groups are electron 
releasing and destabilize carbanions in solution. Ritchie 
and Uschold5 also found 9-methylfluorene more acidic 
than fluorene in dimethyl sulfoxide. In both of these 
cases, the carbanions involved are free ions in a polar 
solvent. However, in cyclohexylamine, a relatively 
nonpolar solvent, the carbanions are present essentially 
entirely as ion pairs.6 

Experimental Section 
Materials Used. Fluorene (Fl), 2,3-benzfluorene (2,3-BF), 

and 9-methylfluorene were described previously.7 9-Benzylfluorene 
(9-BF) was prepared by treating fluorenyllithium with benzyl chlo
ride, mp 134-135° (lit.8 135°). The rest of the 9-alkylfluorenes9 

(5) C. D. Ritchie and R. E. Uschold, J. Amer. Chem. Soc, 89, 1721 
(1967). 

(6) A. Streitwieser, Jr., W. M. Padgett, and I. Schwager, J. Phys. 
Chem., 68, 2922 (1964). 

(7) A. Streitwieser, Jr., W. B. Hollyhead, A. H. Pudjaatmaka, P. H. 
Owens, T. L. Kruger, P. A. Rubenstein, R. A. MacQuarrie, M. L. 
Brokaw, W. K. C. Chu, and H. M. Niemeyer, / . Amer. Chem. Soc., 93. 
5088 (1971). 

(8) G. W. H. Scherf and R. K. Brown, Can. J. Chem., 38, 697, 2450 
(1960). 

(9) We thank Mr. S. Holten for preparing 9-methylfluorene, 9-ethyl-
fluorene, and 9-re/-;-butylfluorene, Mr. R. MacQuarrie for preparing 
9-isopropylfluorene, and Mr. J. Schafer for preparing 9-/e/7-butylfluo-
rene. 
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Abstract: The pK values of several 9-alkylfluorenes were measured by the competition method with both cesium 
and lithium cyclohexylamides. The equilibrium constants of the Cs and Li salts are converted to pK values by 
taking the standard 9-phenylfluorene = 18.49 with both gegenions. The resulting pK values for Cs and Li, 
respectively, are: fluorene, 22.74, 22.50; methyl, 22.33, 22.60; ethyl, 22.60, 22.96; isopropyl, 23.20, 23.75; tert-
butyl, 24.25, 24.82; benzyl, 21.27. The cesium acidities, except for tert-butyl but including benzyl, give a good pa* 
correlation with p = 4.55. The relative acidities of 9-methylfluorene and fluorene are discussed. Temperature co
efficients for most of the substituents were determined and the derived enthalpy and entropy values are discussed 
in terms of ion-pair interactions. 
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